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Abstract

William Sealy Gosset, otherwise known as ““Student”, Fisher's disciple, was one of the pioneers
in the development of modern statistical method and its application to the design and analysis of
experiments. Although there were no computers in his time, he discovered the form of the *t
distribution” by a combination of mathematical and empirical work with random numbers. This is
now known as an early application of the Monte Carlo simulation. Today with the fast computers
and large data storage systems, the probabilities distribution can be estimated using computerized
simulation. Here, we use Monte Carlo simulation to investigate the efficiency of the Baarda’s
iterative data snooping procedure as test statistic for outlier identification in the Gauss-Markov
model. We highlight that the iterative data snooping procedure can identify more observations than
real number of outliers simulated. It has a deserved attention in this work. The available
probability of over-identification allows enhancing the probability of type Il error as well as
probably the outlier identifiability. With this approach, considering the analysed network, in
general, the significance level of 0.001 was the best scenario to not make mistake of excluding
wrong observation. Thus, the data snooping procedure was more realistic when the over-
identifications case is considered in the simulation. In the end, we concluded that for GNSS
network that the iterative data snooping procedure based on Monte Carlo can locate an outlier in
the order of magnitude 4.5¢ with high success rate.

1. Introduction

The reliability of outlier identification is one of the major challenges in the quality control of
geodetic measurements. In the sense of Least Squares Estimation (LSE), the outliers are nuisance
observations that spoil both estimated parameters and their standard deviations, causing incorrect
results. Thus, we often try to minimize the magnitude of undetectable outliers in the observations
as well as to reduce the effect of the undetected ones on the estimated parameters. Two categories
for the treatment of observations contaminated by outliers have been developed: robust adjustment
procedures (for an overview see e.g. Wilcox, 2012; Klein et al. 2015a) and outlier detection based
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on statistical tests (e.g. Baarda, 1968; Pope, 1976; Lehmann and Losler, 2016; Klein et al. 2017).
The first one is outside the scope of this paper. Besides the undoubted advantages of robust
adjustment, the outlier tests are also used. The following advantages of outlier analysis are
mentioned by Lehmann (2013):

» Detected outliers provide the opportunity to investigate causes of gross measurement errors;
»  Detected outliers can be re-measured;

One of the best methods for outlier identification in geodetic data analysis is Baarda’s testing
procedure. This method is due to Baarda (1968). This method consists of three steps (see e.g.
Teunissen 2006): detection (also known as overall model test), identification (also known as data
snooping) and adaption (a corrective action, such as elimination of identified observation as an
outlier).

At each iteration, only a single observation can be identified in the data snooping procedure.
Once an identified observation is excluded, the LSE adjustment is restarted without the rejected
observation and again the identification step (data snooping) is applied. Of course, if redundancy
permits, this procedure is repeated until none identification. This procedure is called “iterative data
snooping” (e.g. Teunissen, 2006). In this paper we are exclusively concerned with iterative data
snooping procedure.

Since data snooping is based on a statistical hypothesis testing with an alternative hypothesis for
each observation, it may lead to a false decision as follows:

» Type | error or false alert (probability level o) — Probability of identifying an outlier when
there is none;

* Type Il error or missed detection (probability level B) — Probability of non-identifying an
outlier when there is at least one; and

»  Type Il error or wrong exclusion (probability level k) — Probability of misidentification a
non-outlying observation as an outlier, instead of the outlying one. This type of error decision was
introduced by (Hawkins 1980; Forstner 1983).

The rate of type | decision error in a binary hypothesis test (i.e., with a single alternative
hypothesis) can be selected by the user. The rate of type Il decision error cannot. Lehmann and
Vol3-Bohme (2017) also point out that a test statistic with a low rate of type Il is said to be powerful
in the binary hypothesis case, when only a single alternative hypothesis is considered. However, in
case of multiple alternative hypotheses (i.e., data snooping), without considering the Type IlI error,
there is a high risk of over-estimating the successful identification probability (see e.g. Yang et al.
2013). On other hand, the confidence level is the probability that a non-outlying observation is
correctly ignored; the power of the test is the probability that an outlier is correctly identified.
Therefore, the confidence level and the power of the test are the probabilities of the test result
leading to correct decisions, as opposed to the occurrence of type I, Il and Il errors (see, for
example, Forstner, 1983; Teunissen, 2006; Klein et al. 2015b).
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Here, we extended the decision errors above; we highlight that “iterative data snooping”
procedure can identify more observations than real number of outliers (we call here “over-
identification”). The later has a deserved attention in this work. The aim of this paper is to compute
the statistical quantities (Power of test, type Il error, Type Il error and “over-identification”) for
iterative data snooping by means of the well-established Monte Carlo Simulation (MCS). This
simulation technique in geodesy has been widely applied since the pioneering idea of Hekimoglu
and Koch (1999).

Many of the relevant probabilities in this contribution are multivariate integrals over complex
regions (Teunissen, 2017). They therefore need to be computed by means of numerical simulation
such as MCS. MCS methods are used whenever the functional relationships are analytically not
simple tractable, as is the case for data snooping testing procedure (Lehmann, 2013). MCS method
replaces random variables by computing excessive random experiments. In other words, the
statistical quantities can be determined by frequency distributions of computer random experiments
performed using random numbers. The MCS has already been applied in outlier detection (e.g.
Lehmann and Scheffler, 2011; Lehmann, 2012; Klein et al. 2012; Klein et al. 2015a, 2015b;
Erdogan, 2014; Niemeier and Tengen, 2017). Following this line of thought, here our goal was to
apply the MCS to analyse the efficiency of the iterative data snooping procedure for the correct
identification (or not) of a single simulated outlier at time.

The rest of the paper is organised as follows: Section ‘Theoretical overview’ brings a theoretical
background about data snooping statistical tests for outlier identification in the LSE. Section ‘Monte
Carlo approach for data snooping procedure’ presents the method for determining the statistical
quantities numerically. Section ‘Experiments and results’ contains the experiments setup, results
and discussions. Finally, last section offers conclusions and recommendations for future studies.

2. Theoretical overview

The mathematical model generally adopted in geodetic data analysis is the linear(ised) Gauss-
Markov model, given by (Koch, 1999):

e=y—AX [1]
Where e is the nx1 random error vector, A is the design(or Jacobian) matrix, x is the uxl

unknown parameters vector and y is the nx1 observations vector. The most employed solution
for a redundant system of equations (n>rank (A)) is the weighted least squares estimator

(WLSE) for the vector of unknowns (X):

% =(ATWA) L(ATWYy) 2]
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W is the n x n weight matrix of the observations, taken asW = ag(Zy)‘l, where o is the variance
factor and X is the covariance matrix of the observations. Teunissen (2003) demonstrates the

geometric interpretation of the WLSE. More details about WLSE estimation can be seen in Ghilani
(2010).

If there are only random errors in the observations, the WLSE is the best linear unbiased
estimator (BLUE) for the unknown parameters; if the observational errors follow the multivariate
normal distribution with mean 4 =[0]and covariance matrix¥ , the WLSE coincides with the
maximum likelihood estimator (Teunissen, 2003). However, the WLSE is no longer optimal in the
presence of systematic and/or gross errors (blunders) in the observations. In other words, despite
optimal properties for WLSE, they lack robustness or insensitivity to outliers in observations
(Huber, 1964; Rousseeuw and Leroy, 1987; Lehmann, 2013). Therefore, statistical testing
procedures for detection and identification of outliers have been developed.

Quiality control to identify outliers in geodetic measurements has been widely investigated since
the pioneering work of Baarda (1968). In the sense of LSE, statistical testing procedures for
detection and identification of outliers are based on maximum likelihood ratio. Consider a null
hypothesis Ho for the parameters of the population probability distribution of an observation vector
y. Consider further an alternative hypothesis Ha for these parameters, constructed in a way that Ho
is a subset of Ha. Thus, in the general case, the maximum likelihood ratio between Ho and Ha is
given by (Larson, 1974):

_max p(y|H,)
A= ax p(ylH,) ]

Where max p(y|H,) is the maximum of the probability density function (pdf) of y under Ho and
max p(y|H ,)is the maximum of the pdf of y under Ha. As the null hypothesis is defined so that

its sample space is contained in the sample space of the alternative hypothesis, the ratio in Equation
3 lies in the interval of 0<A(y)<1 (Teunissen, 2006). The test criterion for the maximum

likelihood ratio is given by (Larson, 1974):

Do not reject H, if A(y)>c [4]

Where ¢ > 0 is the critical value for the test according to the significance level o stipulated (for
more details, see Larson, 1974; Teunissen, 2006).
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Assuming normally distributed observation errors, a general case of hypothesis testing in linear
models is formulated as Teunissen (2006):

Ho E{y}=Ax vs H,E{y}=Ax+C,V;V=0 [5]

Where Ho is the null hypothesis (namely, absence of outliers in the observations) and Ha is an
alternative hypothesis (presence of “q” outlying observations in at certain known locations). The
quantity Cy defines the non-random error model (in this context called outlier model) with
dimension n x g and V is the corresponding vector of g outliers. The dimension of Vshould be
comprised between1<q<n-u. For example, if n =5 and q = 2, then a possible outlier model is

10000 2 . :
C, = and V,, = . (one outlier in each observation y, and y,). For more
00100 vV,

details about error models, see e.g. Lehmann and Ldsler (2016).

Considering the maximum of the pdf of y under Ho and Ha, the maximum likelihood ratio A
between the two hypotheses becomes (Teunissen, 2006):

Reject H, if: T, =& X'C (C; X'X, ¥,°C,)"C/ X ["é>K, [6]

Where €, and %, is the estimated random error vector and a posteriori covariance matrix of the

estimated random error computed by LSE into Ho, respectively. K, is the critical value for the test
according to the significance level a. For more details see Koch (1999) and Teunissen (2003).
Under the null hypothesis, the test statistic Tq follows the central chi-squared distribution with g
degrees of freedom; under the alternative hypothesis, the test statistic Tq follows the non-central

chi-squared  distribution ~ with g  degrees of  freedom and non-centrality
parameter 6 =V'C/ ¥ 'Y, ¥ 'C V.

Data snooping procedure is a particular case of maximum likelihood ratio test when only one
outlier (i.e. g = 1) is present in the data set at a time (see e.g. Baarda, 1968; Pope, 1976; Berber and
Hekimoglu, 2003; Lehmann, 2012). Thus, it is formulated by the following test hypotheses (called
individual model test or w-test) (Baarda, 1968; Teunissen, 2006):

Ho E{y}=Ax vs H,:E{y}=Ax+c, V;V=0 [7]

Where ¢y is outlier model for g=1, i.e. the n x 1 unit vector with 1 in its i entry and zeros in the
remaining (e.g. €, =[O o - 210 - 0 0]T ), and V is a scalar value with the gross error

(outlier) at i observation being tested. Therefore, in the null hypothesis (Ho), it is assumed that
there are no outliers in the observations, while in the alternative hypothesis (Ha), is it assumed that
the i observation being tested ( for i=1,...,n) is contaminated by gross error of magnitude V.
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If we consider one outlying observation in at certain known locations (g = 1), then the maximum
likelihood ratio test for data snooping (Tq = 1) is given by (Teunissen, 2006):

Ta=6 2, c,(cy X," X, X,7c,) ey X8, [8]

Under Ho, observation errors are zero-mean (multivariate) normally distributed. The null
hypothesis is rejected if the following test statistic (Tq=1) of the i observation being tested exceeds
a given critical value K, , i.e.

Reject H, if: T, > K,
[9]

Hy: T, ~ ;((21’0); HyiToy~ Z(ZM) with & = c; Z;lZéo Z;lcyVZ

It should be noted that the test statistic Tq in Equation [8] is a particular case of generalized test
statistic, when g=1. Important to mention also that the critical value follows from a chi-squared
distribution with one degree freedom at a significance level of @ in a one-tailed test. Baarda (1968)
and Teunissen (2006) demonstrate that if g = 1, then the test statistics (Equation 9) can also be
formulated based on a standard normal distribution in a two-tailed test (so-called w-test). Both the
chi-squared and normal distribution tests are equivalent. Usually in geodesy, the value of a is set
between 0.1% and 1% (Kavouras, 1982; Aydin and Demirel, 2004; Lehmann, 2013). Furthermore,
data snooping contains multiple alternative hypotheses, as each observation is individually tested.
Therefore, the only observation considered contaminated by outlier is the one whose test statistic
satisfies the inequalities Tq=1 > K. In the case that two or more observations exceed the critical
value K, only the observation with the largest Tq=1 is flagged as an outlier. After having identified
the observation most suspected of being an outlier (at given ), it is excluded usually from the
model, and WLSE and data snooping are applied iteratively until there are no further outliers
identified in the observations (iterative data snooping procedure) (Teunissen, 2006; Berber and
Hekimoglu, 2003).

However, three types of incorrect decisions may occur into data snooping and its occurrence
rates are associated with probability levels: the significance level a is the probability (when Ho is
true) of a non-outlying observation be misidentified as an outlier (type I error or false positive); B is
the probability that an outlying observation not be identified as outlier (type Il error or false
negative); finally, a non-outlying observation is misidentified as an outlier, instead of the outlying
one (type III error given by ). On other hand, the confidence level (CL) is the probability that a
non-outlying observation is correctly ignored, therefore, CL = 1 — a; the power of the test (y) is the
probability that an outlier is correctly identified, i.e. y = 1 — (p + «). Therefore, the CL and the y are
the probabilities of the test result leading to correct decisions, as opposed to the occurrence of type
I, I and Il errors (see, for example, Forstner, 1983; Teunissen, 2006; Klein et al. 2015b). For

example, the Figure 1 shows these relationships in the data snooping procedure (considering a
single Ha) for CL=0.999, y,=0.80, so «,=0.001 and S,=0.20, leading to a pre-set non-centrality
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parameter 5, =17.075 and a pre-set critical value of K, = 10.83. The type Il error does not

appear in Figure 1; it would be linked with another alternative hypothesis concerning another

observation.

Hy: E{¥} = Ax
/ \
)
{ \ g =17.073
| ,
III
[}
III
| CL=10.999.
|
|
|
|
|
| Hp:Efvl = Ax + ¥
| T T ———
| — Yo = 0.80
g = 0.001
T i,
P /- // i )ﬁfi:rr =
Kﬂo= 10.83

Figure 1. Probability levels related to testing hypotheses of data snooping.

Analyzing Figure 1, it can be concluded that the non-centrality parameter &,as function of the
significance level o,, power of the testy,, and degree of freedom (or number of outliers
considered). The y,decreases with the significance level «for a given value of §,. On the other
hand, the y, increases with the non-centrality parameter 6. Baarda (1968) provides the monograms
for those interested in obtaining o,values as a function of a,and y,(for a given degree of
freedom). Alternatively, Aydin and Demirel (2004) presented a procedure to obtain the same
through approximations of the non-central chi-squared distribution. The necessity of obtaining the
non-centrality parameter is widespread in Geodesy (Baarda, 1968; Kavouras, 1982; Teunissen,

2006; Knight et al. 2010).

In addition to these probabilities, the iterative data snooping procedure can identify more
observations than real number of outliers (here we call “over-identification”). The *over-
identification” may contain one or more observations correctly identified or, in the worst case

scenario, all erroneously identified.

3. Monte Carlo approach to analyse the iterative data snooping procedure

The MCS is applied to compute the probabilities levels. To do so, a sequence of m random errors
vector e,, k=1,...,m of a desired statistical distribution is generated. The “m” is known as the

number of Monte Carlo experiments. Usually, assume that the random errors of the good
measurements are normally distributed with expectation zero. Thus, we generate the random errors
using the well-known Box-Muller method (Box and Muller, 1958) based on multivariate normal
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distribution, since the assumed stochastic model for random errors is based on matrix covariance of
the observations, i.e. e ~ N(0,0,2 ) .

On the other hand, an outlier (g=1) is selected based on magnitude intervals of the outliers for
each m Monte Carlo experiments. We use the standard uniform distribution to select the outlier
magnitude. The uniform distribution is a rectangular distribution with constant probability and
implies the fact that each range of values that has the same length on the distributions support has
equal probability of occurrence (see e.g. Lehmann and Shuffler, 2011). For example, for 10,000
Monte Carlo experiments, if the one choices a magnitude interval of the outliers of |36 to 9c], the
probability of a 3o error occurring is virtually the same as -36, and so on. At each iteration of the
simulation, a specific observation is chosen to receive a gross error based on the discrete uniform
distribution (i.e., all observations have the same probability of being selected).

Random and gross errors are assumed to be independent (by definition) and both are combined
to the total error as follow (see e.g. Kavouras, 1982):

e=e+c,V, V0 [10]

Where ¢ is the n x 1 total error vector, e is n x 1 random errors vector and cy is outlier model for
g=1, and V is a scalar value with the outlier at i'" observation being tested. Here, we assume that
V>e. In order to avoid the compensation and potentiation problems, i.e. V—-e and V+e,

respectively, the observation selected to contain a gross error has its random error removed in the

Equation 10. Before computing statistical test Tq=1 it is necessary to relate the random error vector
e and total error vector ¢, since this statistical test depends on the estimated random error vector €.

In the sense of LSE, this relationship is given by:

ey, =Re¢ [11]

In the Equation 11 the reader should note that the multiplication of the redundancy matrix (R)
and the total error & provides a total error vectore,, . The total error vector is not only composed by

random errors, but also it has one of its elements contaminated by an outlier.
Now it becomes possible to compute the test statistic Tq=1 considering e, instead of &, in the

Equation 8 for all observations and perform the iterative data snooping procedure and qualify the
efficiency in identifying simulated outlier The whole procedure described so far is performed again
until the m Monte Carlo experiments are completed.

The redundancy matrix R in Equation 11 is based on the network geometry and covariance
matrix. The redundancy matrix is given by:

R=1-A(ATWA) AW [12]

Where R is the n x n redundancy matrix and | is the n x n identity matrix. The diagonal elements
of R are the local redundancy numbers (r). The local redundancy numbers indicate the fraction of
a possible outlier on the observation, which is reflected in the respective residue of this observation.
Reliability measures such as local redundancy numbers are intrinsically related to the network
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geometry/configuration and observation weights. Such measure is widely used for quality analysis
of geodetic networks, both in the design stage as well as for quality control (Kuang, 1991; Klein et
al. 2012). It is desirable to have approximately a constant value for all redundancy numbers so that
the ability of detecting outliers will be the same in every part of the network. In other words, one
seeks to minimize the magnitude of undetectable outliers in the observations by increasing the
redundancy numbers in order to have an optimal network configuration (see e.g. Amiri-Seemkooel,
2001a, 2001b). Furthermore, the redundancy numbers are correlated with the robustness parameters

proposed by Vanicek et al. (1990) and Vanicek et al. (2001).

Note that the method described here for evaluating the iterative data snooping depends only on
the matrix A and W, and the magnitude of the desired outlier.

4. Experiments and results

In this study, the previously described method was applied considering a GNSS (Global
Navigation Satellite System) network, with one control station (fixed) and five u stations with
unknown 3D positions (X,Y,Z), totalling six minimally constrained stations (see Figure 2). For each
pair of stations, there are four or five baseline vectors (AX, AY, AZ components). Thus, there are n
= 13 x 3 = 39 observations (baseline vector components), u =5 x 3 = 15 unknowns and n —u = 39
— 15 = 24 redundant observations. The stations are taken from the Brazilian Network for
Continuous Monitoring of GNSS. Baseline vectors, free of outliers, consist in differences between
the stations official coordinates in the SIRGAS2000 reference frame. The observation covariance
matrix is obtained through data processing of 6-hour sessions for each baseline vector, resulting in a
3 x 3 full matrix, combined in a 13 x (3 x 3) = 39 x 39 block diagonal matrix. More details about

network can be found in Klein (2014).

A = Control (fixed) station
MGIN 50km 50 km
@ = Unknown station A | I |
p .IIJ,-r \.‘.“. \- i "
.l"! .\\ . e
g i| \\‘ e S
/ \ ~—__CHPI
{ \\ ee— ‘_;:’
, , N g
SPCA .~ o f—X N |
.\':Z_:___ _.'( \ : /
\'\_ B f \\ k ., -~
\ = n.._if__ "\_ 4 |'I
\ / E » N P & f
Y I,."|l s =, : I|
I-' ""-\-\.__‘_ e '._. |
\ / -‘./,, |'I
/ _8ISP .
|I'II S - |f
\ / P \ N |
\ / - g o
\ ! e
e
POLI@F—

Figure 2. GNSS network analysed by means Monte Carlo approach for data snooping procedure
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It is important to mention that the design matrix defined initially must have a minimum
configuration to avoid rank deficiency as well as being able to identify at least one outlier as
mentioned by Xu (2005) that ‘in order to identify outliers, one also has to further assume that for
each model parameter, there must, at least, exist two good data that contain the information on such
a parameter’. For example, consider the one unknown height into a leveling network (one-
dimensional - 1D). Two observations would lead to different solutions and allow the detection of an
inconsistency between them. Three observations would lead to different solutions and the
identification of one outlying observation, and so on. Thus, in a general case, the value for ‘q’ equal
to the minimal number of redundant observations across each and every point, minus one. For more
details on the choosing the number of outliers to be considered, see Klein et al. (2017).

We highlight that the redundancy numbers (diagonal elements of Equation 12) were between
0.43 (minimum) and 0.78 (maximum) for the network, being classified as a good controllability;
further considerations about GNSS networks are outside the scope of this study.

Here, the significance level for iterative data snooping is varied, taken as o = 0.001 (0.1%), o =
0.005 (0.5%), oo =0.01 (1%), a. = 0.025 (2.5%) and o = 0.05 (5%). Each Monte Carlo simulation has
a unique combination of significance level and magnitude of outliers. We ran 10,000 experiments
for each simulation and compute the rate of type Il error, type Il error, the power of the test and the
over-identification in iterative data snooping, totaling 12 x 4 x 10,000 = 480,000 Monte Carlo
simulations. It is important to emphasize that the proposed method does not depend on the unknown
parameters vector or the vector of observations as can seen in the section 3.

Random errors and outliers are synthetically generated and added to the observations. Each
unknown station is involved in at least four baseline vectors; thus, the local-scale redundancy equals
three. Positive and negative outliers are clipped between 3o and 3.50, 3.50 and 4o0; 46 and 4.50;
4.5¢ and 50; 5 and 5.50; 5.56 and 66; 66 and 6.56; 6.56 and 70; 70 and 7.56; 7.56 and 8c; 8¢ and

8.50; 8.56 and 90 in each experiment.

Figure 3 shows the success rate (number of experiments that only outlying observation was
identified), i.e. the power of the iterative data snooping testing procedure for one simulated outlier
in the GNSS network (y). The misidentifications rates are showed in the Figures 4-5. The
misidentifications are divided in two types of classes are counted in the simulations: number of
experiments where the procedure yielded none observation identification (type Il error - §); number
of experiments in which the procedure identified a single observation but wrong localization (type
I error - x). In addition to these classes, we consider “over-identification” case (more identified
observation than one) and divided it into two categories: number of experiments where the
procedure identified the outlying observation and others (“over-identification +”) — see Figure 6;
number of experiments where the procedure identified only non-outlier observations (“over-
identification —”) — see Figure 7.
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Figure 3. Power of the data snooping testing procedure for GNSS network vs. magnitude
intervals of the outliers for each probability level a
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Figure 4. Type Il error for GNSS network vs. magnitude intervals of the outliers for each
probability level a
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—+—0=0.001- Ka=10.828 =~ o=0.005 Ka=7.879 =sr=0a=0.01 Ka=6.635 = q=0.025 Ka=5.024 == =0.05 Ka=3.841

Type Il Error - k {%)

Outlier magnitude (o)

Figure 5. Type Il error for GNSS network vs. magnitude intervals of the outliers for each
probability level a
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Figure 6. “Over-identification+” for GNSS network vs. magnitude intervals of the outliers for
each probability level a
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Figure 7. “Over-identification—" for GNSS network vs. magnitude intervals of the outliers for
each probability level a

The *“over-identification = was also added to type Il error case (k) (see Figure 8). Tables 1-5
show the success (y), misidentifications (B and «) and over-identifications rates for the various
significance levels and intervals of the outlier size considered in this work.
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Figure 8. “Over-identification—" added to type Il error for GNSS network vs. magnitude
intervals of the outliers for each probability level a

Table 1. Success (y), misidentifications (B and «) and over-identifications for a = 0.001

Outlier Y B K Over- Over-identification
Magnitude ¢ % % identification(+) o (=) %
3-35 60.06 33.67 4.29 1.85 0.13
35-4 76.89 17.81 2.62 2.51 0.17
4-45 87.39 8.38 1.49 2.62 0.12
45-5 92.64 3.18 0.76 3.38 0.04
5-55 955 0.89 0.29 3.32 0
55-6 96.12 0.19 0.15 3.53 0.01
6-6.5 96.41 0.08 0.03 3.47 0.01
6.5-7 96.33 0.04 0.02 3.61 0
7-75 96.43 0 0.01 3.56 0
75-8 96.3 0 0 3.7 0
8-85 96.1 0 0 3.9 0
85-9 96.73 0 0 3.27 0
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Table 2. Success (y), misidentifications (B and «) and over-identifications for a = 0.005

Outlier Y
Magnitude o
3-35 65.39
35-4 76.3
4-45 81.09
45-5 84.13
5-55 84.76
55-6 84.41
6-6.5 85.24
6.5-7 84.54
7-75 83.95
75-8 84.77
8-85 85.18
85-9 84.97

B

%
15.79
6.78
2.6
0.77
0.25
0.02

O O O o o

K
%

6.93
3.66
1.8

0.81
0.27
0.11
0.01

0.02

Over-
identification(+) o

10.77
12.6

14.17
14.09
14.65
15.43
14.75
15.46
16.03
15.23
14.82
15.03

Over-identification
(=) %

1.12

0.66

0.34

0.2

0.07

0.03

0

0
0
0
0
0

Table 3. Success (y), misidentifications (B and «) and over-identifications for a = 0.01

Outlier Y
Magnitude o
3-35 59.2
35-4 67.55
4-45 70.04
45-5 72.18
5-55 72.59
55-6 72.44
6-6.5 73.52
6.5-7 73.04
7-75 73.18
75-8 72.46
8-85 73.31
85-9 72.51

B

%
10.26
4.06
1.5
0.4
0.04
0.01

0.01

o O o

K
%

7.81
3.66
151
0.67
0.14
0.03
0.01

o O O O

Over-
identification(+) o

20.7

23.58
26.38
26.5

27.14
27.48
26.47
26.95
26.82
27.54
26.69
27.49

Over-identification
(=) %

2.03

1.15

0.57

0.25

0.09

0.04

0

0
0
0
0
0
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Table 4. Success (y), misidentifications (B and «) and over-identifications for a = 0.025

Outlier Y B K Over- Over-identification
Magnitude o % % identification(+) o (=) %
3-35 42.21 3.91 5.61 43.13 5.14
35-4 45.8 1.37 2.53 47.87 2.43
4-45 47.35 0.39 1.17 49.95 1.14
45-5 48.29 0.14 0.26 50.92 0.39
5-55 48.38 0.02 0.12 51.24 0.24
55-6 47.69 0 0.04 52.22 0.05
6-6.5 47.13 0 0 52.87 0
6.5-7 48.53 0 0 51.47 0
7-75 47.72 0 0 52.28 0
75-8 48.18 0 0 51.82 0
8-85 48.63 0 0 51.37 0
85-9 47.61 0 0 52.39 0

Table 5. Success (y), misidentifications (B and «) and over-identifications for o = 0.05

Outlier Y B K Over- Over-identification
Magnitude o % % identification(+) o (=) %
3-35 23.7 1.17 3.52 64.68 6.93
35-4 24.17 0.32 1.36 70.92 3.23
4-45 24.64 0.13 0.45 73.28 15
45-5 24.88 0 0.09 74.52 0.51
5-5.5 24.7 0 0.04 75.1 0.16
55-6 24.3 0 0 75.68 0.02
6-6.5 24.57 0 0 75.4 0.03
6.5-7 24.66 0 0 75.34 0
7-75 24.79 0 0 75.21 0
75-8 24.41 0 0 75.59 0
8-85 24.97 0 0 75.03 0
85-9 25.13 0 0 74.87 0

In general, the greater the magnitude of outliers, the greater is the efficiency of iterative data
snooping procedure. It is important to note that from 4.5-5¢ the type II error is practically absent.
The results show also that the probability of committing different types of error depends more on
the critical value than outlier magnitude for one-dimensional identification and the GNSS network
analysed.

Iterative data snooping procedure was more efficient for outliers larger than 4.5c¢. Considering
all results for the GNSS network, the mean success rate was 90.6% for 0=0.001(0.1%) and 82% for
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a=0.005(0.5%). Thus, we consider a=0.001 and a=0.005 satisfactory significance level for the
GNSS network analysed. Therefore, these results show the importance of a correct choice of a, as
pointed out by Lehmann (2012); it also highlights the challenges in controlling the error rate in
multiple hypotheses tests and iterative tests.

Regarding the two classes of over-identification rates, in general, the influence of committing the
“over-identification+” and “over-identification—"is directly related to probability level a, i.e. the
greater type | error, the greater is the over-identifications case. From the 5.5-60 the “over-
identification-"is practically null. Furthermore, if we disregard the “over-identification—" case, one
could erroneously consider the significance level 0.05 the best scenario for type 111 error (see Figure
5). However, considering the type IlI error plus “over-identification-" the lowest probability of
making a wrong exclusion is actually for a significance level of 0.001; as can be seen in the Figure
8. Therefore, the “over-identification—" rates should be considered for a more accurate and thorough
analysis of the type I11 error as well as to avoid false interpretation of the results.

To conclude, it is always important to emphasize that the level of significance that is used to
determine the theoretical critical value of the test is not the probability of the type I error of the
iterative data snooping procedure. It is the only type I error of the local test (w-test) for a single
alternative hypothesis. The type | error of iterative data snooping procedure can also be estimated
based on Monte Carlo simulations. This topic will be covered in future work.

5. Conclusions

Monte Carlo methods are tools for solving problems using random numbers. Although this might
sound somewhat specific and not very promising, Monte Carlo methods are fundamental tools in
many areas of modern science. Here, the goal was to analyse the iterative data snooping testing
procedure to locate an outlier by means of the Monte Carlo Simulations (MCS).

The MCS discards the use of the observation vector of Gauss-Markov model. In fact, the
proposed method here depends only on design matrix A; the uncertainties of the observationsX
and the magnitude intervals of simulated outlier. The random errors (or residues) are generated
artificially from the normal statistical distribution, while the size of outliers is selected using
standard uniform distribution.

Iterative data snooping shows high success rates in the experiments of a GNSS network for a
single outlier randomly generated between four and five standard deviations. The efficiency of the
data snooping also depends on the significance level a. Here, the optimal value for the significance
level was 0.001 (0.1%) for the GNSS network analysed. This value depends more or less on the
functional and stochastic model.

Furthermore, we note that the outlier identifiability in the iterative data snooping procedure is
much more complex than that proposed by Prészynsk (2015), because in our case a removal
operation of observations is performed and we are not restricted only in the first adjustment run.
Here the reliable identification of outlier not only depends on type Il errors, but also the “over-
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identifications case”. The available probability of “over-identification—" allows enhancing the
probability of type Il error and avoids any misinterpretation. In the case of “over-identification+”
requires further clarification in terms of theoretical basis and experiments (e.g. issues related to
Minimal Detectable Bias and Minimal Identifiable Bias). The latter case will be investigated more
closely in the next study.

Finally, we show that MCS is a feasible method to compute the probabilities level associated to a
statistical testing procedure regardless of the statistical tables. Future studies should consider the
case of multiple outliers which is a much more complicated problem and will be a topic of the next
research.
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