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ABSTRACT

Maize is one of the most important subsistence and commercial crops in the world. In Africa, it
is regarded as one of the most popular food crops. Recently however, significant losses due to
Phaeosphaeria leaf spot (PLS) infestation have been reported. Therefore, techniques for early
detection of PLS infestation are valuable for mitigating maize yield losses. Recently, remotely sensed
datasets have become valuable in crop assessment. In this study, we sought to detect early PLS
infestation by comparing the performance of commonly used higher spatial resolution sensors
(WorldView, Quickbird, Sentinel series 2, RapidEye and SPOT 6) based on their spectrally resampled
field spectra. Canopy training spectra were collected on leaves with signs of early infestation and
healthy leaves spectral characteristics used for comparison. Training data was collected in 2013
growing season while test data was collected under similar conditions in 2014. The Random Forest
algorithm was used to establish the Kappa and overall, user and producer's accuracies. Results
showed that the RapidEye sensor with an overall classification accuracy of 86.96% and Kappa value
of 0.76 performed better than the rest of the sensors while the Red, Yellow and Red-Edge bands were
most useful for detecting early PLS infestation. The value of the RapidEye sensor in detecting early
PLS infestation can be attributed to the optimally centred Red Red-Edge bands sensitive to changes
in chlorophyll content, a consequent of PLS infestation on maize leaves. The study provides valuable
insight on the value of existing sensors, based on their sensor characteristics in detecting early PLS
infestation.

Keywords: Phaeosphaeria leaf spot, Remote Sensing, sensors Random Forest, Variable
importance

1. Introduction

Globally, maize is regarded as one of the most important subsistence and commercial crops. In
Africa, a number of authors (eg Derera et al. 2007, Sibiya et al. 2011 and Benhin 2008) note that
maize remains the most important food crop. However, recently maize production in the tropical and
sub-tropical regions of the continent has significantly declined due to the Phaeosphaeria leaf spot
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(PLS) disease infestation (Gongalves et al., 2013; Moreira et al. 2009). The disease affects maize
foliar and is caused by the ascomycete fungus Phaeospharia maydis (Henn.). Initially spotted in India,
studies show that it has spread to North and South America, and recently east and southern Africa
(Gongalves et al., 2013; Moreira et al., 2009; Carson, 2005; Sibiya et al., 2011; Derera et al., 2007).
The infestation often leads to premature leaf desiccation and consequent reduction in the crop cycle,
decrease in grain volume and mass and under severe conditions death of the whole plant (Gongalves
et al., 2013; Paccola et al., 2001). Previous studies have shown that substantial amount (11-60%) of
grain yield is lost in cultivars sensitive to PLS (Derera et al., 2007; Paccola et al., 2001). Whereas
losses due to PLS have not been determined in South Africa, agronomic conditions and preferred
varieties suggest vulnerability to extensive infestation and possible significant yield losses.
Consequently, early detection of infestation and adoption of appropriate mitigation measures is
necessary for sustaining subsistence and commercial production.

Traditionally, field visual surveys have been used to determine PLS infestations. This method
requires constant monitoring and is often costly, time consuming and impractical on extensive fields
(Al-Hiary et al., 2011; Liu, et al., 2008). However, there has been an increased awareness on the
value of remotely sensed datasets, particularly crop leaf spectral reflectance characteristics for
agricultural applications (Chen et al., 2010; Abdel-Rahman and Ahmed, 2008). Recent advances in
sensors on satellite, aerial and ground based platforms in concert with robust algorithms and analysis
techniques have further made it possible to reliably determine crop bio-physical status, due to among
others change in agronomic conditions and pest and disease infestation (Upadhyay et al., 2012; Pinter
et al., 2003). The adoption of remotely sensed datasets in disease mapping has particularly attracted
a lot of interest (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007). Such applications are
premised on the fact that disease infestation cause physiological alteration on leaves, hence a change
in spectral reflectance (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007).

Whereas there has been a recent proliferation of "new generation™ multispectral sensors (e.g.
WorldView-2, Sentinel series 2 and RapidEye) with higher spectral resolution in addition to
traditional sensors (e.g. Quickbird and SPOT), choosing the most suitable sensor and bands for early
detection of PLS infestation remains a challenge. This is because existing sensors are characterised
by a different number of bands and unique spectral configurations, which are sensitive to different
vegetation properties. Therefore, in this study, we sought to determine the potential of commonly
used and proposed sensors for detecting early PLS infestation. Specifically, we sought to compare
the performance of the commonly used multispectral sensors and the importance of each of their
respective bands in detecting early PLS infestation by resampling hyperspectral field data.

2. Materials and methods

2.1. Study Area and field spectral data collection

This study was conducted at the KwaZulu-Natal Department of Agriculture - Cedara Experimental
Farm (29°32 S and 30°16 E), in Pietermaritzburg, KwaZulu-Natal province, South Africa (Figure 1).
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Figurel. The generalised study area showing the Cedara experimental farm.

Field spectral data was collected on 5" of January 2013 and 10" of January 2014 from 138 plots
measuring 3m, 0.75m and 0.3m and 0.75m intra row spacing and row length, respectively at full
canopy cover. Plots for the study were chosen based on the quantity of leaves with signs of early
PLS infestation using optical evaluation (Sibiya et al., 2011). Plots with less than 10% of the leaves
with PLS were regarded as healthy while plots with between 80 to 100% of the leaves with signs of
PLS were regarded to be in the early stage of infestation.

Spectral reflectance for early stage PLS maize canopies were acquired using an Analytical Spectral
Device (ASD Inc, Boulder, CO, USA) FieldSpec®3spectrometer. Spectral data was gathered under
sunny and cloud-free conditions between 10h00 am and 14h00 pm local time in the two growing
seasons (5™ of January 2013 and 10" of January 2014). The ASD spectral measurement range is 350-
2500 nm, measuring radiation at 1.4 nm intervals for 350-1000 nm and 2.0 nm for 1000-2500 nm
spectral regions. Fifteen to twenty measurements were taken from every plot. The Spectral
measurements were then averaged to represent the ultimate spectral measurements of each plot. In
every 10 to 20 computations, a white based spectral measure was executed on the calibration panel
to ameliorate any change in atmospheric conditions and sun irradiance. In total, 66 plots of early
infestation and 72 plots of the healthy maize crop were represented separately. Figure 2 provides a
visual depiction of healthy leaves, early PLS infestation and respective spectral characteristics. On
the 10" of January 2014 (the following growing season) field spectral measurements were acquired
in the same location using a similar procedure and comparative conditions. Spectral measurements
of 60 and 62 plots for early infestation and healthy maize crop were acquired separately.
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Figure 2. Examples of visual status and spectra of healthy maize (a) and early stage of
Phaeosphaeria leaf spot (PLS) infestation (b).

2.2. Field spectra to sensor resampling

Spectral reflectance data was resampled to SPOT6, RapidEye, Quickbird, WorldView-2 and
Sentinel-2 to band centres using ENVI 4.7 image processing software (Tablel). The method used a
Gaussian model with a full width at half maximum (FWMAP) equal to the band spacing provided
(Mutanga and Skidmore 2005). Spectral reflectance was resampled to the popular multispectral
sensors to determine if their respective spectral bands can be used to map the early PLS infestation.
If the results are positive, the mapping and monitoring of PLS could then be operational at lower cost

using these sensor platforms compared by the use of hyperspectral data.

Tablel. Spectral bands and band centres (WorldView-2, Quickbird, Sentinel-2, RapidEye and

SPOT 6).

Spectral Band

Band range centre

Sensor description (nm) (nm)
WorldView-2 Coastal 400-450 425
Blue 450-510 480
Green 510-580 545
Yellow 585-625 605
Red 630-690 660
Red-Edge 705-745 725
NIR 1 770-895 832
NIR 2 860-1040 950
Quickbird Blue 450-520 485
Green 520-600 560
Red 630-690 660
NIR 760-900 830
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Spectral Band

Band range centre
Sensor description (nm) (nm)
Sentinel series2  Aerosols 433-533 443
Classical blue 458-523 490
Green 542-578 560
Red 650-680 665
Red-Edge 1 695-713 705
Red-Edge 2 733-748 740
Red-Edge 3 773-793 783
Red-Edge 4 785-900 842
NIR 855-875 865
Water Vapour 935-955 945
RapidEye Blue 440-510 475
Green 520-590 555
Red 630-685 658
Red-Edge 690-730 710
NIR 760-850 805
SPOT 6 Blue 455-525 490
Green 530-590 560
Red 625-695 660
NIR 760-890 825

2.3. Statistical analysis

Random Forest (RF) algorithm was used to classify and predict healthy maize and the early PLS
infestation. Random Forest is a bagging process in which various classification trees are created with
reference to random subsets of samples arising from training data (Adelabu et al., 2013). The
algorithm classifies and measures important variables in high dimensional data such as hyperspectral
data and therefore decreases the “curse of dimensionality” without losing important information in
the dataset (Adam et al., 2012). For an exhaustive explanation of the Random Forest algorithm see
Breiman (2001). In this study, the RF classifications were computed using the ‘rattle’ package
available in R software and used to generate confusion matrices that provide overall accuracy (OA),
user accuracy (UA) and producer accuracy (PA). Cohen’s Kappa coefficient were calculated using
the formula:

_ Pr(@)-Pr(e)
1-Pr(e)

Where Pr(a) is the actual detected agreement and Pr(e) represents unpredicted agreement
(Hallgren, 2012). Kappa gives measured values of agreement between varying observations (Viera
and Garrett, 2005). It provides a determination of variability that range from -1 to +1 where +1
represents absolute agreement between different observations, 0 representing an agreement that can
happen by coincidence and -1 represent lower possibility of agreement between observations (Viera
and Garrett, 2005).
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2.4. Determination of variable importance

Variable importance in large datasets identifies a variable that yields outstanding performance
compared to other variables. Variable importance in RF computes different measures such as how
often a variable is determined, the Gini significance and permutation significance. The permutation
importance is considered better than other measures because it assesses value of the variable using
mean decrease accuracy based on out-of-bag postulations (Breiman, 2001). The RF can compute the
significant variables through the mean decrease in accuracy. Values of mean decrease in accuracy
that are high indicate greater significance of that particular variable while low values indicate low
significance. Typically, as aforementioned, all bands in the spectrum are focused at a specific range
and are sensitive to specific attributes of feature/s being mapped.

3. Results
3.1. Accuracy Assessment

Table 2 shows the accuracy for Quickbird, RapidEye, Sentinel-2, SPOT 6 and WorldView-2
sensors. The overall accuracy refers to observations that have been correctly classified. User accuracy
refers to probability that an observation classified represents a category on the ground while producer
accuracy refers to an observation being classified. The overall accuracy values for training data
ranged from 83.33% to 89.13% while overall values for test data ranged from 79. 71% to 86.96%.
Kappa values for training data sets ranged from 0.62 to 0.78 while the accuracy for test data ranged
from 0.59 to 0.76. The Kappa values indicate the level of agreement between the predictions and the
classified observations. The highest overall accuracy in the classification of the early stage of PLS
was achieved using RapidEye (overall accuracy of 86.96%, producer accuracy of 87.50%, user
accuracy of 87.50 and Kappa of 0.76). The lowest overall accuracy on the other hand was obtained
using SPOT 6 (overall accuracy of 79.71, producer accuracy of 79.17, user accuracy of 81.43 and
Kappa of 0.59 (see Table 2).

Table2. Accuracy Assessment for early stage Phaeosphaeria leaf spot (PLS) infestation using
different sensors. User Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA). Healthy
Stage (HS), Early Stage (ES).

Training data

Sensor OA UA PA KAPPA
HS ES HS ES
Quickbird 83.33 84.85 81.94 81.16 85.51 0.67
RapidEye 88.41 89.39 87.5 86.76 90 0.77
Sentinel Series 2 81.16 78.79 83.33 81.25 81.08 0.62
SPOT 6 82.61 83.33 81.94 80.88 84.29 0.65
WorldView 2 89.13 90.91 87.5 86.96 91.3 0.78
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Test data
Sensor OA UA PA KAPPA
HS ES HS ES
Quickbird 82.61 81.82 83.33 81.81 83.33 0.65
RapidEye 86.96 86.36 87.5 86.36 87.5 0.76
Sentinel Series 2 80.43 75.76 84.72 81.97 79.22 0.61
SPOT 6 79.71 80.3 79.17 77.94 81.43 0.59

WorldView 2 84.78 84.85 84.72 83.58 85.92 0.70

3.2. Variable importance

Figure 3 shows the performance of sensors rated in terms of variable importance of their respective
spectral bands. Based on the mean decrease percentages, the Red band was identified as the most
significant in detecting early PLS infestation. Other significant bands include the Yellow and the Red-
Edge bands.
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Figure 3. Variable importance of (a) Quickbird, (b) SPOT 6, (c) RapidEye, (d) Worldview-2 and (e)
Sentinel-2. (MDA = Mean Decrease in Accuracy).
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4. Discussion

This study sought to discriminate between early PLS infestation and the healthy maize crop by
resampling hyperspectral data to SPOT 6, Quickbird, RapidEye, Sentinel-2 and WorldView-2.
Spectral resampling was performed using the Random Forest, a robust algorithm for predicting and
classifying variables. Results in this study show that RapidEye, with an overall accuracy of 86.96%
and Kappa of 0.76, offer better detection of early PLS infestation than other sensors. These findings
are consistent with Adam et al. (2012) who found that using relevant bands without redundancy
increases classification accuracy in vegetation mapping. According to Adam et al. (2012), the
RapiEye's Red and Red-Edge bands are particularly valuable in vegetation analysis. Whereas the
WorldView-2 and Sentinel-2 are also characterised by the Red and Red-Edge bands, their overall
classification accuracy, 84.78 and 80.43, respectively and were lower in detecting early PLS
infestation than the RapidEye.

This study showed that the RF algorithm could be used to determine the value of each of the bands
in the commonly used sensors in determining early PLS infestation. Variable importance showed that
the Red band in the visible region of the spectrum, the Yellow band and the Red-Edge band were
most valuable in detecting early PLS infestation. A number of studies (e.g. Digital Globe, 2010,
Zhang et al., 2005 and Apan et al., 2005) have noted the value of the Red band in vegetation studies.
Zhang et al. (2005) for instance noted that the Red band was sensitive to crops infested by diseases
while Apan et al. (2005) found that the Red band in the visible region was valuable in predicting
Alternaria solani fungal infection on tomatoes. The Yellow band's ability to determine early PLS
infestation can be attributed to its ability to identify “yellowness’’, a common characteristic in
diseased plants (Digital Globe, 2010; Oliveira et al., 2010 ). The Red-Edge band has the ability to
assess plant nutrition, health and discriminate vegetation species (Filella and Pefiuelas, 1994; Pinar
and Curran, 1996; Daughtry et al., 2000; Rodriguez et al., 2006). According to Eitel et al. (2011), the
Red-Edge band can determine both the amount of chlorophyll and Nitrogen, the main determinants
of the crop health.

Results obtained from this study demonstrate the potential of multispectral resolution imagery,
such as RapidEye in early detection of PLS infestation. The WorldView-2 is also recommended for
PLS detection for its three important bands (Red, Yellow and Red-Edge). This study provides an
indication of the most useful sensors for PLS infestation. However, for image applications, this must
results should be treated with caution as spatial resolution is also known to significantly influence
mapping accuracy. The influence of spatial resolution on the optimum sensor's (eg RapidEy) mapping
accuracy needs further investigation.

5. Conclusion

The aim of this study was to detect early PLS infestation by resampling spectral data to different
multispectral sensors. Results in this study showed that early PLS infestation can be better detected
using RapidEye's multispectral bands. The significant bands for early PLS infestation were the Red,
Yellow, and the Red-Edge bands. Using the Random Forest algorithm, an overall accuracy of 86.96%
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on RapidEye image to detect early PLS infestation was achieved. This study demonstrates the
potential of the Random Forest algorithm in determining the useful sensor and sensor characteristics
for early detection of PLS infestation, critical for image up-scales and timely adoption of mitigation
measures.
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