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ABSTRACT 

Maize is one of the most important subsistence and commercial crops in the world. In Africa, it 

is regarded as one of the most popular food crops. Recently however, significant losses due to 

Phaeosphaeria leaf spot (PLS) infestation have been reported. Therefore, techniques for early 

detection of PLS infestation are valuable for mitigating maize yield losses. Recently, remotely sensed 

datasets have become valuable in crop assessment.  In this study, we sought to detect early PLS 

infestation by comparing the performance of commonly used higher spatial resolution sensors 

(WorldView, Quickbird, Sentinel series 2, RapidEye and SPOT 6) based on their spectrally resampled 

field spectra. Canopy training spectra were collected on leaves with signs of early infestation and 

healthy leaves spectral characteristics used for comparison. Training data was collected in 2013 

growing season while test data was collected under similar conditions in 2014.  The Random Forest 

algorithm was used to establish the Kappa and overall, user and producer's accuracies. Results 

showed that the RapidEye sensor with an overall classification accuracy of 86.96% and Kappa value 

of 0.76 performed better than the rest of the sensors while the Red, Yellow and Red-Edge bands were 

most useful for detecting early PLS infestation. The value of the RapidEye sensor in detecting early 

PLS infestation can be attributed to the optimally centred Red Red-Edge bands sensitive to changes 

in chlorophyll content, a consequent of PLS infestation on maize leaves. The study provides valuable 

insight on the value of existing sensors, based on their sensor characteristics in detecting early PLS 

infestation.  

Keywords: Phaeosphaeria leaf spot, Remote Sensing, sensors Random Forest, Variable 

importance 

1. Introduction 

Globally, maize is regarded as one of the most important subsistence and commercial crops. In 

Africa, a number of authors (eg Derera et al. 2007, Sibiya et al. 2011 and Benhin 2008) note that  

maize remains the most important food crop. However, recently maize production in the tropical and 

sub-tropical regions of the continent has significantly declined due to the Phaeosphaeria leaf spot 
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(PLS) disease infestation (Gonçalves et al., 2013; Moreira et al. 2009). The disease affects maize 

foliar and is caused by the ascomycete fungus Phaeospharia maydis (Henn.). Initially spotted in India, 

studies show that it has spread to North and South America, and recently east and southern Africa 

(Gonçalves et al., 2013; Moreira et al., 2009; Carson, 2005; Sibiya et al., 2011; Derera et al., 2007). 

The infestation often leads to premature leaf desiccation and consequent reduction in the crop cycle, 

decrease in grain volume and mass and under severe conditions death of the whole plant (Gonçalves 

et al., 2013; Paccola et al., 2001).  Previous studies have shown that substantial amount (11-60%) of 

grain yield is lost in cultivars sensitive to PLS (Derera et al., 2007; Paccola et al., 2001). Whereas 

losses due to PLS have not been determined in South Africa, agronomic conditions and preferred 

varieties suggest vulnerability to extensive infestation and possible significant yield losses. 

Consequently, early detection of infestation and adoption of appropriate mitigation measures is 

necessary for sustaining subsistence and commercial production. 

Traditionally, field visual surveys have been used to determine PLS infestations. This method 

requires constant monitoring and is often costly, time consuming and impractical on extensive fields 

(Al-Hiary et al., 2011; Liu, et al., 2008). However, there has been an increased awareness on the 

value of remotely sensed datasets, particularly crop leaf spectral reflectance characteristics for 

agricultural applications (Chen et al., 2010; Abdel-Rahman and Ahmed, 2008). Recent advances in 

sensors on satellite, aerial and ground based platforms in concert with robust algorithms and analysis 

techniques have further made it possible to reliably determine crop bio-physical status, due to among 

others change in agronomic conditions and pest and disease infestation (Upadhyay et al., 2012; Pinter 

et al., 2003). The adoption of remotely sensed datasets in disease mapping has particularly attracted 

a lot of interest (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007). Such applications are 

premised on the fact that disease infestation cause physiological alteration on leaves, hence a change 

in spectral reflectance (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007).  

Whereas there has been a recent proliferation of "new generation" multispectral sensors (e.g. 

WorldView-2, Sentinel series 2 and RapidEye) with higher spectral resolution in addition to 

traditional sensors (e.g. Quickbird and SPOT), choosing the most suitable sensor and bands for early 

detection of PLS infestation remains a challenge. This is because existing sensors are characterised 

by a different number of bands and unique spectral configurations, which are sensitive to different 

vegetation properties. Therefore, in this study, we sought to determine the potential of commonly 

used and proposed sensors for detecting early PLS infestation. Specifically, we sought to compare 

the performance of the commonly used multispectral sensors and the importance of each of their 

respective bands in detecting early PLS infestation by resampling hyperspectral field data.  

2. Materials and methods 

2.1. Study Area and field spectral data collection 

This study was conducted at the KwaZulu-Natal Department of Agriculture - Cedara Experimental 

Farm (29°32 S and 30°16 E), in Pietermaritzburg, KwaZulu-Natal province, South Africa (Figure 1).  
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Figure1. The generalised study area showing the Cedara experimental farm. 

Field spectral data was collected on 5th of January 2013 and 10th of January 2014 from 138 plots 

measuring 3m, 0.75m and 0.3m and 0.75m intra row spacing and row length, respectively at full 

canopy cover.  Plots for the study were chosen based on the quantity of leaves with signs of early 

PLS infestation using optical evaluation (Sibiya et al., 2011).  Plots with less than 10% of the leaves 

with PLS were regarded as healthy while plots with between 80 to 100% of the leaves with signs of 

PLS were regarded to be in the early stage of infestation.  

Spectral reflectance for early stage PLS maize canopies were acquired using an Analytical Spectral 

Device (ASD Inc, Boulder, CO, USA) FieldSpec®3spectrometer. Spectral data was gathered under 

sunny and cloud-free conditions between 10h00 am and 14h00 pm local time in the two growing 

seasons (5th of January 2013 and 10th of January 2014). The ASD spectral measurement range is 350-

2500 nm, measuring radiation at 1.4 nm intervals for 350-1000 nm and 2.0 nm for 1000-2500 nm 

spectral regions. Fifteen to twenty measurements were taken from every plot.  The Spectral 

measurements were then averaged to represent the ultimate spectral measurements of each plot. In 

every 10 to 20 computations, a white based spectral measure was executed on the calibration panel 

to ameliorate any change in atmospheric conditions and sun irradiance. In total, 66 plots of early 

infestation and 72 plots of the healthy maize crop were represented separately.  Figure 2 provides a 

visual depiction of healthy leaves, early PLS infestation and respective spectral characteristics. On 

the 10th of January 2014 (the following growing season) field spectral measurements were acquired 

in the same location using a similar procedure and comparative conditions. Spectral measurements 

of 60 and 62 plots for early infestation and healthy maize crop were acquired separately.  
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Figure 2. Examples of visual status and spectra of healthy maize (a) and early stage of 

Phaeosphaeria leaf spot (PLS) infestation (b).  

2.2. Field spectra to sensor resampling 

Spectral reflectance data was resampled to SPOT6, RapidEye, Quickbird, WorldView-2 and 

Sentinel-2 to band centres using ENVI 4.7 image processing software (Table1). The method used a 

Gaussian model with a full width at half maximum (FWMAP) equal to the band spacing provided 

(Mutanga and Skidmore 2005). Spectral reflectance was resampled to the popular multispectral 

sensors to determine if their respective spectral bands can be used to map the early PLS infestation. 

If the results are positive, the mapping and monitoring of PLS could then be operational at lower cost 

using these sensor platforms compared by the use of hyperspectral data.  

 

Table1. Spectral bands and band centres (WorldView-2, Quickbird, Sentinel-2, RapidEye and 

SPOT 6).  

Sensor 

Band 

description 

Spectral 

range 

(nm) 

Band 

centre 

(nm) 

WorldView-2 Coastal 400-450 425 

 Blue 450-510 480 

 Green 510-580 545 

 Yellow 585-625 605 

 Red 630-690 660 

 Red-Edge 705-745 725 

 NIR 1 770-895 832 

 NIR 2 860-1040 950 

Quickbird Blue 450-520 485 

 Green 520-600 560 

 Red 630-690 660 

 NIR 760-900 830 
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Sensor 

Band 

description 

Spectral 

range 

(nm) 

Band 

centre 

(nm) 

Sentinel series 2 Aerosols 433-533 443 

 Classical blue 458-523 490 

 Green 542-578 560 

 Red 650-680 665 

 Red-Edge 1 695-713 705 

 Red-Edge 2 733-748 740 

 Red-Edge 3 773-793 783 

 Red-Edge 4 785-900 842 

 NIR 855-875 865 

 Water Vapour 935-955 945 

RapidEye Blue 440-510 475 

 Green 520-590 555 

 Red 630-685 658 

 Red-Edge 690-730 710 

 NIR 760-850 805 

SPOT 6 Blue 455-525 490 

 Green 530-590 560 

 Red 625-695 660 

 NIR 760-890 825 

2.3. Statistical analysis 

Random Forest (RF) algorithm was used to classify and predict healthy maize and the early PLS 

infestation. Random Forest is a bagging process in which various classification trees are created with 

reference to random subsets of samples arising from training data (Adelabu et al., 2013). The 

algorithm classifies and measures important variables in high dimensional data such as hyperspectral 

data and therefore decreases the “curse of dimensionality” without losing important information in 

the dataset (Adam et al., 2012). For an exhaustive explanation of the Random Forest algorithm see 

Breiman (2001). In this study, the RF classifications were computed using the ‘rattle’ package 

available in R software and used to generate confusion matrices that provide overall accuracy (OA), 

user accuracy (UA) and producer accuracy (PA). Cohen’s Kappa coefficient were calculated using 

the formula:  

K= 
Pr(𝑎)−Pr(𝑒)

1−Pr(𝑒)
 

Where Pr(a) is the actual detected agreement and Pr(e) represents unpredicted agreement 

(Hallgren, 2012). Kappa gives measured values of agreement between varying observations (Viera 

and Garrett, 2005). It provides a determination of variability that range from -1 to +1 where +1 

represents absolute agreement between different observations, 0 representing an agreement that can 

happen by coincidence and -1 represent lower possibility of agreement between observations (Viera 

and Garrett, 2005). 
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2.4. Determination of variable importance 

Variable importance in large datasets identifies a variable that yields outstanding performance 

compared to other variables. Variable importance in RF computes different measures such as how 

often a variable is determined, the Gini significance and permutation significance. The permutation 

importance is considered better than other measures because it assesses value of the variable using 

mean decrease accuracy based on out-of-bag postulations (Breiman, 2001). The RF can compute the 

significant variables through the mean decrease in accuracy. Values of mean decrease in accuracy 

that are high indicate greater significance of that particular variable while low values indicate low 

significance. Typically, as aforementioned, all bands in the spectrum are focused at a specific range 

and are sensitive to specific attributes of feature/s being mapped. 

3. Results 

3.1. Accuracy Assessment 

Table 2 shows the accuracy for Quickbird, RapidEye, Sentinel-2, SPOT 6 and WorldView-2 

sensors. The overall accuracy refers to observations that have been correctly classified. User accuracy 

refers to probability that an observation classified represents a category on the ground while producer 

accuracy refers to an observation being classified. The overall accuracy values for training data 

ranged from 83.33% to 89.13% while overall values for test data ranged from 79. 71% to 86.96%. 

Kappa values for training data sets ranged from 0.62 to 0.78 while the accuracy for test data ranged 

from 0.59 to 0.76. The Kappa values indicate the level of agreement between the predictions and the 

classified observations. The highest overall accuracy in the classification of the early stage of PLS 

was achieved using RapidEye (overall accuracy of 86.96%, producer accuracy of 87.50%, user 

accuracy of 87.50 and Kappa of 0.76). The lowest overall accuracy on the other hand was obtained 

using SPOT 6 (overall accuracy of 79.71, producer accuracy of 79.17, user accuracy of 81.43 and 

Kappa of 0.59 (see Table 2). 

Table2. Accuracy Assessment for early stage Phaeosphaeria leaf spot (PLS) infestation using 

different sensors.  User Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA). Healthy 

Stage (HS), Early Stage (ES). 

                                                        Training data

Sensor OA                     UA                       PA KAPPA

HS ES HS ES

Quickbird 83.33 84.85 81.94 81.16 85.51 0.67

RapidEye 88.41 89.39 87.5 86.76 90 0.77

Sentinel Series 2 81.16 78.79 83.33 81.25 81.08 0.62

SPOT 6 82.61 83.33 81.94 80.88 84.29 0.65

WorldView 2 89.13 90.91 87.5 86.96 91.3 0.78
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                                            Test data

Sensor OA                      UA                       PA KAPPA

HS ES HS ES

Quickbird 82.61 81.82 83.33 81.81 83.33 0.65

RapidEye 86.96 86.36 87.5 86.36 87.5 0.76

Sentinel Series 2 80.43 75.76 84.72 81.97 79.22 0.61

SPOT 6 79.71 80.3 79.17 77.94 81.43 0.59

WorldView 2 84.78 84.85 84.72 83.58 85.92 0.70

 

3.2. Variable importance 

Figure 3 shows the performance of sensors rated in terms of variable importance of their respective 

spectral bands. Based on the mean decrease percentages, the Red band was identified as the most 

significant in detecting early PLS infestation. Other significant bands include the Yellow and the Red-

Edge bands. 

 

Figure 3. Variable importance of (a) Quickbird, (b) SPOT 6, (c) RapidEye, (d) Worldview-2 and (e) 

Sentinel-2. (MDA = Mean Decrease in Accuracy).  
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4. Discussion 

This study sought to discriminate between early PLS infestation and the healthy maize crop by 

resampling hyperspectral data to SPOT 6, Quickbird, RapidEye, Sentinel-2 and WorldView-2. 

Spectral resampling was performed using the Random Forest, a robust algorithm for predicting and 

classifying variables. Results in this study show that RapidEye, with an overall accuracy of 86.96% 

and Kappa of 0.76, offer better detection of early PLS infestation than other sensors. These findings 

are consistent with Adam et al. (2012) who found that using relevant bands without redundancy 

increases classification accuracy in vegetation mapping. According to Adam et al. (2012), the 

RapiEye's Red and Red-Edge bands are particularly valuable in vegetation analysis. Whereas the 

WorldView-2 and Sentinel-2 are also characterised by the Red and Red-Edge bands, their overall 

classification accuracy, 84.78 and 80.43, respectively and were lower in detecting early PLS 

infestation than the RapidEye.  

This study showed that the RF algorithm could be used to determine the value of each of the bands 

in the commonly used sensors in determining early PLS infestation. Variable importance showed that 

the Red band in the visible region of the spectrum, the Yellow band and the Red-Edge band were 

most valuable in detecting early PLS infestation. A number of studies (e.g. Digital Globe, 2010, 

Zhang et al., 2005 and Apan et al., 2005) have noted the value of the Red band in vegetation studies. 

Zhang et al. (2005) for instance noted that the   Red band was sensitive to crops infested by diseases 

while Apan et al. (2005) found that the Red band in the visible region was valuable in predicting 

Alternaria solani fungal infection on  tomatoes. The Yellow band's ability to determine early PLS 

infestation can be attributed to its ability to identify “yellowness’’, a common characteristic in 

diseased plants (Digital Globe, 2010; Oliveira et al., 2010 ). The Red-Edge band has the ability to 

assess plant nutrition, health and discriminate vegetation species (Filella and Peñuelas, 1994; Pinar 

and Curran, 1996; Daughtry et al., 2000; Rodriguez et al., 2006). According to Eitel et al. (2011), the 

Red-Edge band can determine both the amount of chlorophyll and Nitrogen, the main determinants 

of the crop health. 

Results obtained from this study demonstrate the potential of multispectral resolution imagery, 

such as RapidEye in early detection of PLS infestation. The WorldView-2 is also recommended for 

PLS detection for its three important bands (Red, Yellow and Red-Edge). This study provides an 

indication of the most useful sensors for PLS infestation. However, for image applications, this must 

results should be treated with caution as spatial resolution is also known to significantly influence 

mapping accuracy. The influence of spatial resolution on the optimum sensor's (eg RapidEy) mapping 

accuracy needs further investigation.  

5. Conclusion 

The aim of this study was to detect early PLS infestation by resampling spectral data to different 

multispectral sensors. Results in this study showed that early PLS infestation can be better detected 

using RapidEye's multispectral bands. The significant bands for early PLS infestation were the Red, 

Yellow, and the Red-Edge bands. Using the Random Forest algorithm, an overall accuracy of 86.96% 
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on RapidEye image to detect early PLS infestation was achieved. This study demonstrates the 

potential of the Random Forest algorithm in determining the useful sensor and sensor characteristics 

for early detection of PLS infestation, critical for image up-scales and timely adoption of mitigation 

measures.  
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