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Abstract 

The techniques of point cloud classification in aquatic environments have various applications 
such as landslide hazard mapping, recovery of lost objects, underwater infrastructure inspection, 
exploration of mineral resources on the seabed, underwater cultural heritage documentation, 
environmental preservation and conservation purposes. This study combines acoustic (Sonar) and 
laser-based (Lidar) remote sensing technologies in an aquatic environment with two machine and 
deep learning approaches to illustrate the techniques to identify submerged objects. Firstly, the 
relative accuracy of the underwater imaging system, the BlueView BV5000 Mechanical Scanning 
Sonar, is evaluated at close range. Secondly, the supervised CANUPO and RandLA-Net classification 
approaches are used to classify submerged sonar point clouds. Common objects of interest, namely 
tyres and chairs, were selected for classification. Relative accuracy measurement results showed a 
centimetre-level root mean square error (RMSE) value, with good accuracies recorded when the 
scanner is positioned close to objects. The best results were achieved when the target objects were 
placed at a minimum distance of 2 m from the acoustic scanner. Subsequently, the results of point 
cloud classification were satisfactory for both approaches. An overall accuracy of 79.81% and an 
F1 score of 79.80% were achieved using the CANUPO classification approach. On the other hand, 
an 80.72% overall accuracy and an 80.63% F1 score were obtained using a RandLA-Net approach. 
These analyses provide a reasonable framework for the parameters that can be used when applying 
these techniques in natural aquatic environments. 

 
Keywords: 3D Sonar point clouds, Accuracy assessment, Point cloud classification, CANUPO, 

RandLA-Net, Underwater Cultural Heritage 

 
1. Introduction 

The classification of three-dimensional (3D) point cloud data using machine and deep learning 
(ML and DL) approaches has been a centre of interest in terrestrial environments. A large collection 
of points characterises point clouds, each defined by XYZ coordinates in a three-dimensional (3D) 
space. Additional information, such as reflectivity and colour values, may be contained in a point 
cloud depending on the sensor's mode of measurement (Van Genechten, 2008). Owing to 
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advancements in point cloud acquisition technologies, light detection and ranging (Lidar) and 
structure-from-motion (SfM) photogrammetry, these approaches have become solutions in acquiring 
point cloud data (Hu et al., 2012; Westoby et al., 2012). As a result, numerous studies have classified 
terrestrial point clouds for mapping (Alexander et al., 2011; Peeroo et al., 2017; Ntuli and Forbes, 
2023), disaster management (Richter et al., 2013) and preserving cultural heritage sites (Grilli et al., 
2019; Pepe et al., 2022). While the aforementioned studies have focused on classifying point clouds 
above the earth's surface, research is expanding to explore underwater environments. In the point 
cloud context, classification is assigning predefined category labels to a group of points in a point 
cloud (Weinmann et al., 2015). A limited number of studies have explored the classification of 
underwater objects for various applications. Examples include the recovery of lost objects (Tsai et al. 
(2021), terrain-based navigation, target object detection (Sung et al. (2020), damage detection (Hake 
et al. (2023), and navigation (Palomer et al., 2015). Most studies rely on the geometry of point clouds 
for classification since acquiring other attributes in the underwater environment may be challenging. 
Among the intriguing prospective uses of underwater point cloud classification is the identification 
and preservation of the underwater cultural heritage. In Liarokapis et al. (2017), optical data were 
employed to create models and maps of submerged archaeological assets. This methodology 
facilitated the derivation of precise archaeological information on the shipwreck and amphorae which 
was rendered available in virtual reality. In addition to recording and conserving historical sites, 
underwater archaeology provides insights into past civilisations (Bowens, 2011). South Africa is rich 
in underwater archaeology, mainly, in the form of shipwrecks settled beneath our oceans. However, 
very few sites have been surveyed and documented (DSAC, 2009). There is also a necessity to classify 
and document archaeological objects submerged underwater. 

Menna et al. (2018) have provided a comprehensive overview of the state-of-the-art techniques 
and applications of the 3D recording and mapping of the underwater cultural heritage. Various 
technologies and methods, including laser scanning and acoustic imaging, for surveying underwater 
archaeological sites have been discussed. Among these technologies is the Blueview multi-beam 
echosounder, developed by Teledyne Marine (2018), which is capable of acquiring 2D sonar images. 
With the advancing developments, a 3D Mechanical Scanning Sonar (MSS) BV5000 has been 
introduced (Teledyne Marine, 2020). The BV5000 is an MSS that produces high-resolution imagery 
and point clouds of underwater objects and scenes. It can be mounted on a remotely operated vehicle 
(ROV) or tripod and produce both sector and spherical scan data. 3D scanning capabilities are 
achieved even under low or zero visibility conditions. Acoustic signals are preferred underwater as 
they can effectively propagate and reflect, making them less vulnerable to environmental conditions 
(Forrest, 1994). According to UNESCO (2015), non-destructive survey methods are preferred over 
object recovery to protect the underwater cultural heritage. Moreover, non-invasive methods should 
be employed when excavation is required to conserve the artifacts. Hence, the BV5000 MSS is 
suitable for such applications. Other studies have assessed the ability of the BV5000 MSS to measure 
objects accurately. For example, Moisan et al. (2018) conducted a study that compared the point 
clouds produced by the BV5000 MSS with those produced by a Terrestrial Laser Scanner (TLS) in a 
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harbour lock. When empty, a lock was scanned using a TLS and then filled to perform the survey 
using the BV5000 MSS. The results revealed that detecting details smaller than 4cm was more 
difficult using the BV5000 MSS. Another study by Lesnikowski and Rush (2012) from the Blueview 
Corporation showed a similar comparison when the accuracy was evaluated in a dry dock. Initially, 
a TLS survey of the vacant dry dock was conducted; sonar acquisitions were then performed once the 
dock had been filled. Differences of 3-5cm were obtained for translational measurements. 
Additionally, the results revealed that better outcomes are achieved when the Blueview MSS is 
positioned in close proximity to the target object. Similarly, we evaluated the relative accuracy of the 
BV5000 MSS in close range by comparing measurements at different distances from point clouds of 
the same objects gathered on land and underwater. 

Extensive work has been invested in classifying point cloud data using deep learning methods. 
PointNet++ and PointCNN networks have shown remarkable competence, outperforming state-of- 
the-art techniques in this field (Qi et al., 2017; Li et al., 2018). Several research works have classified 
underwater-derived point clouds for various applications. Sung et al. (2020) employed a neural 
network to train and classify a point cloud created from sonar images captured through an autonomous 
underwater vehicle (AUV) by reconstructing the 3D shape of the object. The method proposed is 
suitable for navigating across the terrain and identifying objects. In Hake et al. (2023), underwater 
point clouds were converted to depth images and classified using a neural network to automate 
damage detection in port structures. Moreover, Tsai et al. (2021) conducted a study wherein they 
implemented neural networks (PointNet and PointConv) described in Qi et al. (2017) and Wu et al. 
(2019) to classify a 3D point cloud underwater to identify discarded tyres. The results demonstrated 
promising potential for detecting lost objects in underwater environments. Himri et al. (2019) 
conducted a comparative analysis of state-of-the-art techniques for object recognition leveraging the 
open-source Point Cloud Library (PCL) (Rusu and Cousins, 2011). This study indicated the 
challenges in underwater environments, including noise and fluctuations in resolution. Furthermore, 
the study underscored the critical significance of aligning the resolution of both the database and test 
scan datasets to optimise descriptor performance. While previously mentioned studies have 
significantly contributed to underwater point cloud classification, in this research, we explore the 
multi-class classification of sonar point clouds using CANUPO and RandLA-Net approaches, 
evaluate the performance of these approaches and compare the outcomes. 

 
 

2. Study Area 

On account of several compelling factors, the swimming pool at the University of KwaZulu-Natal 
(UKZN) Westville Campus was identified as the study area for the underwater point cloud 
classification research. The controlled environment of the swimming pool provides the best 
conditions for conducting experiments and minimising external factors that could influence study 
outcomes. Moreover, the swimming pool is accessible and safe, and allows for an adequate time 
frame for deploying underwater imaging technologies for effective data collection. Figure 1 shows 
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the UKZN's Westville campus swimming pool, from which training and testing datasets were 
collected. 

 

Figure 1: Presentation of the study area in KwaZulu-Natal Province, Aerial View (WGS84 
coordinates of the red triangle: 29°49'12.35" S, 30°56'43.19" E). 

 
3. Materials and Methods 

3.1. Description of Instruments and Objects 

Two types of scanners, namely the acoustic Sonar multibeam scanner and the terrestrial laser 
scanner, were used for accuracy assessments and point cloud acquisitions. The Blueview® 
(www.blueview.com) BV5000 mechanical scanning sonar (MSS), pan and tilt system, tripod, and 
associated accessories were used (see Figure 2(a)). The Sound Navigation and Ranging Sonar 
measures distances by using the propagation of sound waves which makes it resistant to changes in 
lighting. This makes it particularly suitable for applications in challenging underwater environments. 
The BV5000 Mechanical Scanning Sonar (MSS) is a specialised underwater imaging system that 
operates at a frequency of 1.35 MHz, making it possible to capture high-resolution 3D point clouds 
of underwater structures and environments. It operates in a similar manner to that of a Terrestrial 
Laser Scanner (TLS), but instead of using light waves for measurement purposes, it employs sound 
waves. Moreover, the system emits fan-shaped sonar signals and receives echoes, creating a 
comprehensive 3D point cloud while panning around an object or an underwater environment. The 
terrestrial laser scanner, a Faro 3D Focus 120 TLS (see Figure 2(b)) was used to collect 3D point 
cloud data on land. This instrument is phase shift-based and may collect data within a 0.6 m – 120 m 
range. It emits a laser beam by using a rotating mirror, which is directed toward the scanning area 
and covers a vertical and horizontal range of 305º and 360º, respectively. As the laser beam 
encounters objects, it reflects back to the scanner, and the distances to these objects can then be 
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determined. A comparison of the characteristics of the BV5000 MSS and the Faro Focus 3D 120 TLS 
is presented in Table 1 below. 

 
Table 1: The characteristics of the Blueview BV5000 and the Faro FOCUS 3D 120 TLS as per the 

specifications of the manufacturer 
 

 Blueview BV5000 Sonar Faro FOCUS 3D 120 TLS 
Beam Width 1º x 1º (mm) 3 mm 
Ranging error 15 mm ±2 mm (10-25 m) 
Maximum Range 30 m 120 m 
Horizontal resolution ~ 0.09º (16 mm@10 m) 0.009º 
Vertical resolution 0.18º (30 mm@10 m) 0.009º 
Field-of-view (vertical/horizontal) 45º /360º (320º /360º) 305º /360º 

 
To facilitate the assessment of the relative accuracy of the BV5000 MSS the relevant metal and 

wooden cubes and cuboids employed in the research study. These objects were manufactured 
according to strictly prescribed dimensions so as to minimise the measuring errors (see (Figure 2 (c) 
and (d)). The cubes measured 40cm on each side, while the vertices of the rectangular cuboids 
measured 40cm, 50cm and 70cm, respectively. Furthermore, plastic chairs and rubber tyres (see 
Figure 3(e) and (f)), were used for the point cloud classifications. These objects have good reflective 
properties and are commonly found in the real world. Several software programmes were used in this 
investigation. ArcMap 10.6 was used for map creation; ProScan 3.13 and ProViewer were used to 
configure the scanner and to collect data; Blueviewer software was used to view 3D point cloud data 
on site; and CloudCompare software (Girardeau-Montaut, 2023) was used for point cloud processing 
− the last-mentioned including noise filtering and scan registration; and ArcGIS Pro 3.1 and 
CloudCompare 2.13 beta were used to perform point cloud classifications. 

 

Figure 2: (a) Blueview BV5000 MSS; (b) Faro FOCUS 3D 120 TLS; (c) metallic cuboid and cube; 
(d) wooden cuboid and cube (e) plastic chair; and (f) rubber tyre. 
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3.2. Methods 

The methods used in the study are explained in more detail in this section. The stages are as 
follows: point cloud data acquisition, where the point clouds were acquired using both Lidar and 
acoustic scanners; point cloud cleaning and registration, where the noise was removed and individual 
scans were combined to create a full 3D view of the scene; scanner accuracy assessment, where the 
accuracy of the acoustic scanner was evaluated against the measurements from the Lidar scanner; 
point cloud classification, where CANUPO and RandLA-Net classification approaches were applied 
to classify underwater point clouds; and classification accuracy assessment, where the performance 
of the classification models was evaluated. Figure 3 illustrates the comprehensive procedures adopted 
throughout this study. 

 

Figure 3: Flow chart showing the overall methodology workflow: accuracy assessment and point 
cloud classification. 

3.2.1. Point Cloud Data Acquisition 

The first dataset of this study was used to assess the relative accuracy of the Blueview BV5000 
MSS at close range. A cuboid and a cube were scanned using the Faro Focus (360) TLS at distances 
of 2m, 4m, and 6m, respectively. Similarly, while submerged in the swimming pool, the cuboid and 
cube were scanned at exact distances by the BV5000 MSS. Point cloud data were collected using 
both laser and acoustic scanning processes. The linear surfaces of the cubes and cuboids reflected the 
laser and acoustic signals to the effect that their respective outlines were clearly visible on the point 
clouds. Following the data collection process, a manual cleaning process was performed on the point 
clouds to eliminate unwanted noise. Furthermore, corresponding points and dimensions were 
identified for distance measurements and comparisons. 

The second dataset applied in of this study was used for the classification of 3D Sonar point clouds 
in the sub-aquatic environment. 3D point cloud data were collected using a Blueview BV5000 MSS 
mounted on a tripod and connected to ProScan software. Figure 4(a) shows the experimental setup 
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(b) (a) 

before the researcher collected the 3D point cloud data. Initially, for classification purposes, only the 
chairs and tyres were submerged in the swimming pool. This was followed by the immersion of the 
BV5000 MSS in the pool until the tripod was firmly settled on the floor. Image calibration was then 
performed to ensure accurate measurements. Each scan adhered to identical scanning parameters, 
namely one detection per beam and the employment of spherical scans covering a 360° horizontal 
range, along with vertical angles of 0° and -15°. In some instances, and depending on the position of 
the objects, a vertical angle of -45° was used. Multiple scanner positions were used to obtain a 
complete 3D scene image. However, although classification models should function well with only a 
single scan, five scans were collected for each dataset. Figure 4(b) shows the 3D point cloud produced 
by the BV5000, with the scanner positioned at the centre of the objects. The raw 3D point cloud data 
contained isolated points resulting from reflections of the pool walls and surface. Point cloud data 
cleaning was performed manually to remove noise brought on by backscattering. 

 

Figure 4: (a) Objects submerged in water; (b) Corresponding 3D point cloud data collected using 
the BV5000 MSS 

 
 

3.2.2. Point Cloud Cleaning and Registration 

CloudCompare software was used to process the point cloud data collected through the Lidar and 
acoustic scanners. For the underwater environment, the noise was filtered to remove the outliers and 
the swimming pool floor reflection data from the point cloud data. The interactive segmentation tool 
in CloudCompare was used to remove outliers in the point cloud data. Data points identified as noise 
were manually removed from the point cloud, while the noise filter automatically removed the 
outliers. Furthermore, the CSF algorithm, devised by Zhang et al. (2016), was also used to remove 
the swimming pool floor reflection data. The data collected had sufficient overlap to allow point cloud 
registration in that a cloud-based method could be applied. Scans collected from different positions 
were aligned to obtain a complete 3D scene through registration. This approach was time-consuming; 
however, good accuracies were obtained. In addition to CloudCompare, it should be noted that 
alternative software applications, such as AVEVA Point Cloud Manager (AVEVA, 2020) and Leica 
Cyclone (Leica Geosystems, 2017), are available for the purposes of point cloud cleaning and 
registration. 

3.2.3. Scanner Accuracy Assessment 
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To evaluate the relative accuracy of the BV5000 MSS, measurements were taken on selected 
objects of interest, namely a cuboid and a cube made up of metallic and wooden materials. Point 
cloud data were acquired in the outdoor environment using a Faro Focus 3D 120 TLS, starting from 
a distance of 2 m from the objects. Data were then collected at 4 m and 6 m distances, respectively. 
The same objects were submerged in water to acquire underwater point cloud data with the aid of the 
BV5000 MSS and by applying the same experimental procedure. Inherent challenges, such as drifting 
and floating objects associated with the underwater environment, emerged. However, weights were 
used to ensure that the objects remained stationary while underwater. Numerous measurements were 
taken using each of the respective instruments. The corresponding points and dimensions were 
identified in the point cloud from the reflections of the surfaces of the cuboids and cubes, thereby 
allowing for accurate measurements of the scanner residuals to be made. TLS point cloud data were 
used as reference models from which expected values could be measured. Lastly, the consistency and 
the concurrence between the measurements acquired by the two scanners were analysed by 
determining the differences in the measured values. Furthermore, the Root Mean Square Error 
(RMSE) (equation 1) of the linear measurements was used to determine the relative accuracy for each 
distance (Willmott, 1982). 

 

𝑅𝑀𝑆𝐸 =	'∑ ("#!	#	"!	)$

&
&
'()          [1] 

Where:  
𝑅𝑀𝑆𝐸   - Root Mean Square Error 
𝑥&!    - Predicted value 
𝑥!    - Observed value 
𝑛     - Number of observations 

3.2.4. Point Cloud Classification 

The main objective of this study lay in exploring Machine and Deep Learning algorithms for 
classification tasks in the underwater environment. Machine learning aims to equip computers with 
the ability to identify patterns through data-driven learning, thereby enhancing their performance 
without the need for explicit programming. Moreover, computational algorithms and techniques are 
developed to automate the recognition process and save time (Langley and Simon, 1995). On the 
other hand, Deep Learning is a progression of machine learning, where algorithms are arranged in 
layers to create an artificial neural network capable of autonomous learning and intelligent decision- 
making (Wang and Raj, 2017). For this study, two distinct classification algorithms were selected, 
namely, CANUPO and RandLA-Net. These algorithms were selected with due consideration given 
to their widespread adoption and proven efficacy across diverse classification tasks, even though, to 
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the best of our knowledge, they have not been previously employed for underwater point cloud 
classification. 

The sonar point clouds do not contain colour information; thus, the geometry of points is 
considered for feature extraction. The datasets remained consistent throughout, with identical datasets 
used for training across both classification algorithms, with 70% allocated for training and 30% for 
validation purposes. Additionally, an independent testing dataset with similar characteristics was 
used. The steps involved in the classification process are outlined in Figure 3. The training dataset 
comprised point clouds containing chairs and tyres carefully annotated for supervised classification. 
Another dataset was reserved for validation to check whether the models could generalise on a 
labelled dataset and to assess the accuracy of the models. Lastly, the testing dataset comprised unseen 
point clouds for checking whether the models could in fact generalise in new environments. 

3.2.4.1.  CANUPO Classification 

Cortes and Vapnik (1995) developed the Support Vector Machine (SVM) learning algorithm, 
which is currently used on a large scale in classification and regression tasks. This algorithm employs 
a predetermined non-linear mapping function to transform the input vectors into a higher-dimensional 
feature space. It is then possible to establish a linear decision surface with special attributes that 
guarantee the network's exceptional ability to generalise effectively within this feature space (Cortes 
and Vapnik, 1995). The SVM aims to identify a hyperplane that not only separates the categories but 
also maximises the margin between the closest data points of different classes, known as support 
vectors (Boser et al., 1992). As a result, the SVM is robust in over-fitting and generalises well in 
respect of unseen data. It has demonstrated its strong performance, even when trained on small 
datasets (Cortes and Vapnik, 1995; Foody and Mathur, 2004). In this study, we employed the 
CAractérisation de NUages de POints (CANUPO) - SVM classification algorithm, developed by 
Brodu and Lague (2012). This algorithm relies on the local dimensionality attributes of points within 
a point cloud. Depending on the chosen scale and location, the points are categorized as 1D, 2D, or 
3D. Combining information on various scales results in distinctive signatures, enabling the 
recognition of different object classes within the scene. These signatures are automatically generated 
through training points, facilitating the optimisation of class separability. Moreover, descriptors are 
created by integrating information from different scales, thereby aiding in identifying other object 
classes present on the scene. The classification process involves two steps: firstly, the data are 
projected onto a plane to achieve maximum separability, and secondly, classes within that plane are 
divided by a boundary. In this study, the CANUPO algorithm was executed using CloudCompare 
software, with the classification parameters set to dimensionality. Since CANUPO is based on a 
binary classification, the classifier was trained to identify only tyres and chairs using 10 000 
maximum core points and scales between 0.4m and 1.00m. 

3.2.4.2.  RandLA-Net Classification 

RandLA-Net is a Deep-learning (DL) neural architecture designed for the semantic segregation of 
large-scale 3D point clouds. This model employs a random sampling method to reduce the point 
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density in extensive datasets (Hu et al., 2020). The architecture of the RandLA-Net network 
comprises input, encoding, decoding, and output layers. The input layer processes the point cloud 
data containing 3D coordinates, with the possibility, in some instances, of including colour 
information. This input layer then connects to the encoder-decoder layer with skip connections. Each 
encoding layer employs the random downsampling of the point cloud, thereby significantly reducing 
its point density. The network incorporates a local feature aggregation module for each point to 
preserve the essential features of the downsampled point cloud. Each decoding layer then performs 
an upsampling of the point feature set by using nearest-neighbour interpolation. The network 
combines these upsampled maps with feature maps generated by the encoding layers through skip 
connections and applies a shared MLP to the concatenated feature maps. Finally, the output layer 
provides predictions for all points in the point cloud (Hu et al., 2020). 

The RandLA-Net algorithm was executed in ArcGIS Pro version 3.1 Software and the 
classification procedure was divided into four steps (ESRI, 2023). The first step involves data 
preparation whereby the point cloud data for training and validation are converted into an HDF5 
format to create training data (The HDF Group, 2023). These data are then used in the second step to 
train a DL model for the point cloud classification task. The third step assesses the quality of the point 
cloud classification model using an already annotated point cloud. Lastly, the developed model is 
applied to classify the unseen point cloud. 

Both training and validation data were extracted from the same point cloud by splitting the data 
into two datasets. An additional point cloud, comprising the same objects of interest, was used to test 
the RandLA-Net model. The model was trained using 15 epochs with 100% of the iterations per epoch 
and a batch size of two. Three classes were pre-assigned, namely, tyre, chair, and unassigned. The 
unassigned class was excluded during the preparation and training steps. As a result, only the tyres 
and chairs were considered. 

3.2.5. Classification Accuracy Assessment 

The performance of classification approaches used in this study was evaluated using confusion 
matrices. The rows and columns in this matrix represent the true and predicted class labels, 
respectively. For a more in-depth analysis, secondary indicators derived from statistical results were 
used. Accuracy, Precision, Recall, and the F1 score gave insightful information about the performance 
and accuracy of the classification techniques. The precision of a classifier is the percentage of true 
positives, or positive predictions, that are in fact correct. Contrarily, recall (sensitivity) represents the 
proportion of true positives correctly identified as positive by the classifier. Lastly, the F1 score 
indicates the overall accuracy of the model. From the confusion matrix, the following metrics were 
obtained: 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = "#$"%

"#$"%$&#$&%
        [2] 
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Where:  

𝑇𝑃 - true positive 
𝑇𝑁 - true negative 
𝐹𝑃	       - false positive 
𝐹𝑁		      - false negative 

 

4. Results and Discussion 

4.1. Results of Scanner Accuracy Assessment 

Measurements obtained from the Lidar point clouds were used as references to assess the accuracy 
of the BV5000 MSS. Multiple measurements were taken to observe good precision, and like the 
method employed by Coetzee and Singh (2021), the average values were calculated. Figure 5 shows 
the Root Mean Square Error (RMSE) values calculated for each distance, indicative of the mean of 
discrepancies between the estimated and observed values. A trend of increasing RMSE values was 
noticed as the distance increased. This is consistent with the difficulties that are expected as 
measurement ranges are extended. For example, it was found that there was a loss of energy from the 
acoustic and Lidar scanners, respectively, as the distance from the scanners increased. This is known 
as signal attenuation. There was also absorption and scattering of the signal from air and water 
particles. Interestingly, the results show the scattering properties of wooden and metal objects. The 
reflective surface in the point cloud data generated from the wooden materials had a higher density 
of points when compared to the reflections from the metallic objects. As a result, the task of measuring 
the dimensions of point clouds was more challenging in the case of the metallic objects. At distances 
of 2m and 4m from the scanner, we observed that metal and wooden objects present with negligible 
RMSE differences of ±4cm. At 6m from the scanner, it was observed that wooden objects have lower 
RMSE values than metal objects. This could be due to the scattering of the signal from the surfaces 
of the metal objects as opposed to that from the wooden objects, that would, in the latter case, provide 
better reflections. This also shows that the optimal measuring distance from the scanner is 4m for 
scanning objects with dimensions of 40cm and larger, thereby resulting in errors of ±4cm. 

Figure 5 also shows the different scattering properties of the cubes and cuboids. No difference can 
be seen at 2m from the scanner, while the RMSE differences become more prominent at distances of 
4m and 6m from the scanner. In general, this could mean that smaller RMSE differences are observed 
when assessing reflections from the cube as opposed to those from the cuboid. These differences are 
primarily due to the smaller dimensions of a cube as opposed to those of a cuboid. 
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Figure 5: Chart showing RMSE values as a function of distance 

It was observed that the primary challenge with increasing distance was the density of points, 
resulting in difficulties when taking measurements. Moreover, in some instances, objects were not 
fully imaged, resulting in point clouds with discontinuities. These results reveal that placing the 
SONAR scanner closer to the target objects produces scans of high-density points; hence, a better 
resolution. As a result, the ideal distance for applications in close-range conditions is determined by 
the geometric accuracy assessment. Therefore, the BV5000 MSS was positioned approximately 2m 
from the target objects during point cloud acquisition for classification tasks. The outcomes of this 
research are comparable to what has been documented in other studies, such as in the research studies 
of Coetzee and Singh (2021) and Moisan et al. (2018). 

4.2.    Results of Classification and Model Comparisons 

In this study, the CANUPO and RandLA-Net approaches were used to classify objects of interest, 
namely tyres and chairs, from the submerged point cloud. The CANUPO approach is based on the 
dimensionality of object points and is capable of combining different scales to create descriptors. 
Considering the size of the target objects, the selected scales ranged between 0.40m and 1.00m. 
During the classifier training, high separability and recognition values were achieved. Moreover, to 
determine whether the created model could make generalisations on unseen data, an independent 
point cloud was used for model testing. The swimming pool floor was removed and the classifier was 
applied to the remaining points. 

Figure 6 shows the experimental setup and the datasets that were used to create the classifier. 
Furthermore, the CANUPO classification results are also presented in Figure 6(d). A visual inspection 
of the point cloud classification findings shows that the tyre category achieved a high recognition 
rate. However, this category was affected mainly by commission errors. This could be due to the 
geometry of the chair legs and the hollow shape resembling the tyres used in the training dataset. 
Some points belonging to the chair category were classified as tyres. On the other hand, since the 
binary classification was applied, the chair category was influenced by errors of omission. A 
confusion matrix was applied to quantitatively evaluate the performance of the CANUPO model (see 
Table 2). 
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Figure 6: Classification results of the CANUPO Model: (a) An image of the test dataset (b) Training 

dataset (c) Test dataset (d) Classified test dataset. 

 
Table 2: Classification evaluation results of the CANUPO Model 

 

Class/Model Training Set   Test Set   
 Precision Recall F1 Score Precision Recall F1 Score 

Tyre 0.930 0.967 0.948 0.987 0.680 0.790 
Chair 0.947 0.927 0.946 0.680 0.989 0.806 
Overall accuracy 94.72%   79.81%   

 
Table 2 shows the quantitative evaluation results determined using a confusion matrix. During the 

training phase, an overall accuracy of 94.72% was achieved, thereby demonstrating how well 
CANUPO can differentiate between chairs and tyres in point cloud data. Moreover, upon applying 
the model to the unseen dataset, an overall classification accuracy of 79.81% was achieved. With 
recall at 68% and precision at 98.7% in the tyre category, the F1 score was 79%. Conversely, the 
chair category received an F1 score of 80.6%, with a precision of 68% and a recall of 98.9%. 

Figure 7 presents the classification results obtained using the RandLA-Net model. The same 
training data used in CANUPO was used. In (a), the reference evaluation set is shown, and in (b), the 
classification results of the validation data are displayed. The model was trained at 15 epochs, and 
the points that were part of the reflection from the pool floor were excluded during both the training 
and validation phases. As in the testing of the CANUPO model, the RandLA-Net model was tested 
on unseen data to evaluate the accuracy of the classification. Upon visual inspection, Figure 7(b) 
shows the classification results on the validation set. A few misclassifications in the chair category 

 (a) 

 

 

(b) 
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were significant. On the other hand, the tyres were associated with a high degree of recognition. On 
the test dataset, the tyre category was associated with commission errors. Furthermore, a quantitative 
assessment of classification accuracy was conducted. In Table 3, an overall accuracy of 94.08% was 
achieved on the validation dataset. 

 
 (b) 

 

 

 (d) 

 

 

 
Figure 7: Classification results of the RandLA-Net Model: (a) Validation dataset, (b) Classified 

validation dataset, (c) Test dataset and (d) Classified test dataset. 

 
Table 3 Classification evaluation results of the RandLA-Net Model 

 

Class/Model Validation Set  Test Set   
 Precision Recall F1 Score Precision Recall F1 Score 

Tyre 0.904 1.00 0.950 0.657 0.999 0.793 
Chair 1.00 0.866 0.928 0.999 0.695 0.819 
Overall accuracy 94.08%   80.72%   

 
An overall accuracy of 80.72% was achieved by testing the RandLA-Net model on an unseen 

dataset. Regarding tyres, 65.7% precision, 99% recall, and a 79.3% F1 Score were recorded. In 
contrast, the chair category received an F1 Score of 81.9%, 69.5% recall, and 99% precision. Table 
4 provides a summary of the classification outcomes for each method. Comparable results were 
obtained during the validation phase, and 94.72% and 94.08% were achieved for the CANUPO and 
RandLA-Net models, respectively. These results indicate the ability of both models to excel in respect 
of the training data. Nevertheless, testing resulted in a significant accuracy decline to 79.81% for the 
CANUPO and 80.72% for the RandLA-Net model, indicating possible challenges in making 
generalisations in respect of unseen data. These results show accuracy comparable to underwater 
point cloud classification research, including that conducted by Tsai et al. (2021) and Kogut and 
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Slowik (2021). However, Tsai et al. (2021) achieved higher accuracies using the PointNet and 
PointConv network architectures. These studies focused only on classifying one category at a time. 
In this study, two classification categories were considered. 
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Figure 7: (a) Ground truth test dataset, (b) Classification results of the CANUPO Model and 

(c) Classification results of the RandLA-Net Model 

 
Table 4: A summary of classification evaluation results of CANUPO and RandLA-Net 

 

 CANUPO  RandLA-Net  

 Validation Data Test Da Validation Data Test Data 

Precision 93.85% 83.35% 95.20% 82.81% 

Recall 94.70% 83.45% 93.30% 84.73% 
F1 Score 94.70% 79.80% 93.89% 80.63% 
Accuracy 94.72% 79.81% 94.08% 80.72% 

 
The CANUPO model took about two minutes to train, while the RandLA-Net model took an hour 

and 10 minutes on the CPU. Both models achieved satisfactory classification results, although 
significant misclassifications (circled in red in Figure 7) were also noticed when the models were 
applied to unseen data. The possible reasons behind these results include the limited datasets used for 
training. To train classification models that perform well with unseen data, it is essential to use a 
diverse training dataset. Other studies have used data augmentation to overcome this problem (Tsai 
et al., 2021; Long et al., 2023). Apart from limited datasets, underwater environments are dynamic, 
and the quality of the point clouds acquired is subject to noise owing to attenuation of the signal. 
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Moreover, particularly in this research, in the case of the chair category, point clouds were associated 
with discontinuities. Certain legs and chair seats were not fully reconstructed. To keep variables 
constant, an optimal distance of 2m from the scanner was used to eliminate the attenuating effect of 
the signal. It was also noted that the two objects were made of different materials: the plastic chair, 
with steel legs, and the rubber tyre. The difference in the material properties of the objects caused 
negligible differences in the effectiveness of the performance of both classification approaches. The 
classification errors in this research are possibly due to the geometric effects, where, as a result of the 
shadow effect, the reflections from the chair resemble those of the tyre. The developed models 
performed well in classifying objects, even when used on point clouds obtained from a single scan. 
This highlights the ability of the model to accurately recognise and classify objects in the context of 
a single scan. 

These findings point to the potential for improvement, especially considering the limitations of 
small datasets. Opportunities for improvement include a more comprehensive range of training 
datasets. Furthermore, beyond the CANUPO and RandLA-Net methodologies, other pertinent 
software tools contribute significantly to point cloud processing and classification. Notable examples 
include Pointly (Pointly, 2024), Lidar360 (Lidar360, 2013), The Cross Product (The Cross Product, 
2020) and Pix4D Mapper (Pix4D SA, 2024). 

 
 

5. Conclusion 

The first aim of this research was to evaluate the relative accuracy of the BV5000 MSS, while the 
second aim was to classify submerged sonar point clouds. This study has reported on the relative 
accuracy of the BV5000 Mechanical Scanning Sonar on metal and wooden materials for close-range 
application in a controlled underwater environment. At varying distances, objects of different sizes 
and materials were scanned on land using a TLS. Moreover, a similar setup was replicated in the 
underwater environment. The results indicate that positioning the BV5000 MSS closer to the target 
objects provides measurements that are comparable with those obtained using a TLS. Furthermore, 
wooden objects had higher point cloud densities and resolution than metal objects. Owing to the 
possible scattering effects, the wooden objects had lower RMSE values at greater distances than the 
metallic objects. These findings provide valuable insights into determining the optimal scanner 
positions for the classification task. 

The second aim of this research extended to point cloud classification using CANUPO and 
RandLA-Net approaches. Underwater point cloud classification has gained popularity in various 
industry applications. As regards this contribution, we extend to classifying multiple objects of 
interest. The CANUPO and RandLA-Net approaches were trained to identify submerged tyres and 
chairs. The results obtained from these approaches are comparable in terms of their overall accuracy 
levels and their F1 scores. The results of both models show good classification accuracy. This 
demonstrates good potential for applying these techniques in underwater cultural heritage 
preservation and awareness issues, landslide hazard mapping, disaster recovery expeditions, 
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underwater infrastructure inspections and the exploration of mineral resources on the seabed. Future 
research in this field should explore point cloud classifications in natural sub-aquatic environments 
and the building up of an extensive database of our underwater natural marine heritage. 
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